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Abstract—A heat transfer correlation for opposing mixed turbulent convection in vertical ducts was
obtained utilizing surface renewal theory. The correlation was found to be

0.8 1.0.5 696 Grp, 039

The correlation fit data to within 7% over a parameter range of 0.7 < Pr <7, 1 x10* < Rep, <2x 104,
and 1 x 10° < Grp, <2x 10°. The mean residence time, characterizing the time a clump of fluid resides on

the wall, was found to decrease as both Grp, /Rep,’

(Pr®>+1) and Re,, increase. This explains the enhanced
y

heat transfer due to buoyancy in opposing mixed turbulent flows. This heat transfer enhancement was also
reflected in a decreasing thermal boundary layer thickness with increasing Rep, , Grp, or Pr.

INTRODUCTION

CoMBINED turbulent convection refers to fluid flow
influenced by both buoyancy forces and dynamic pres-
sure forces. The buoyancy forces can act in either the
same (aiding) or opposite direction (opposing) to the
dynamic pressure forces. In heated vertical ducts with
equal wall temperatures or equal wall heat fluxes sym-
metry can be imposed and the duct half width becomes
the characteristic dimension. The density gradient
across the duct half width, due to the difference in the
wall and free stream temperatures, drives the buoyant
layer upward near the hot wall. This layer entrains
fluid from the downward flowing free stream. The net
mass flow through the duct, which remains constant,
determines the magnitude of the forced flow. The
main concern in these flow systems lies in how these
opposing forces influence flow structure and heat
transfer.

Studies of mixed turbulent flows conducted over
the past 50 years have dealt with either air or water
flowing in horizontal or vertical ducts and tubes.
Nakajima et al. [1] examined turbulent mixed con-
vection between parallel vertical plates for air both
experimentally and theoretically. Both aiding and
opposing buoyancy flows were treated for fully
developed flow with Gr/Re® <2x10~2 Results
showed that the Nusselt number increased with
increasing Gr/Re? (based on duct width) for forced
flow with an opposing buoyancy force, and decreased
with increasing Gr/Re? for forced flow with an aiding
buoyancy force. This phenomenon was attributed to
an increasing velocity fluctuation (eddy size) in oppos-
ing flow and vice versa for aiding flow. Theoretically,
Nakajima et al. derived a modified Van Driest damp-

ing factor which incorporated a buoyancy force in a
non-isothermal field for fully developed flow. This
damping factor was used in conjunction with the
forced convection ‘mixing length’ theory of Cebeci [2]
to model turbulence via an eddy diffusivity. Nakajima
et al. noted that the model contained a shortcoming
found in most eddy diffusivity models ; namely, that
turbulent diffusion goes to zero at a maximum or
minimum point in the velocity field. In many cases
combined turbulent flow fields display both maximum
and minimum flow velocities where turbulent
diffusion cannot be neglected. Doshi and Gill [3] have
developed an improved mixing length theory which
alleviates this shortcoming for purely forced convec-
tion. Even though Nakajima et al.’s model incor-
porates buoyancy effects into the damping factor, it
seems that these forces should also be included in the
actual ‘mixing length’ theory as proposed by Oos-
thuizen [4] for vertical plates. Despite these
arguments, the theoretical predictions of heat transfer
and the distribution of eddy diffusivity showed good
agreement with experimental data.

Jackson and Fewster [5] studied turbulent mixed
convection for water flowing in vertical tubes both
experimentally and theoretically. A similar theoretical
approach for the same geometry has been presented
in Axcell and Hall [6] for air and Jackson [7] for liquid
metals. Jackson’s method combined the buoyancy
force with the shear stress by evaluating the change in
shear stress across the buoyant layer given by the
integral

ab
Ag;, = ﬁ (po—p)g dy.

Adding the change in shear stress across the buoyant
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Cr coefficient of friction

D duct half width

D, hydraulic diameter (4D)

g gravitational constant

Grp, Grashof number, gB(T*—T*)Dg/v?
Nup,  Nusselt number, g, Dy/k(TE—TF)
r pressure, P*/pu?,.

Pep,  Peclet number, Pr Rey,

Pr Prandtl number, v/a

q heat flux

Re,,  Reynolds number, u,,.Dy/v

t time, t*u,../Dy,

T temperature, (T*—T*)/(T¥—T¥)

u x-directed velocity, u*/u,,.

x vertical spatial coordinate parallel to the

duct walls, x*/D,,
y spatial coordinate perpendicular to the
duct walls, y*/D,,.

NOMENCLATURE

Greek symbols

o thermal diffusivity

B thermal expansion coefficient

é buoyant layer thickness

v kinematic viscosity

p density

G shear stress, o*/puZ,,

T mean walk residence time, 7*u,,./ Dy
Subscripts

ave  average

b bulk

D, hydraulic diameter

e free stream

w wall

0 value for pure force convection.
Superscripts

* dimensional quantity.

layer to the shear stress at the wall yielded a modified
shear stress which was used to modify the forced con-
vection heat transfer correlation (Nuj, o) of Petukhov
and Kirillov [8]. By proper parameter adjustment, the
correlation was made to fit data over a wide mixed
flow parameter range. The correlation was found to
be

Nup, —
= (1+4500Gr, Rep?'/® Pr=UH%3 (1)
Nup o n g
where
G
Rey, Pri
Nup, o = 0
G 2/3
12.7 ) (Pr*3 —1)+1.07
Gr= 1 @
'™ (3.641og,, Re,, —3.28)7
— — D3
Grp, = (oy p)}g h
PoV
and
Tb
P=Tw_TwapdT. 3)

The above relationship agrees very well with data for
water flowing in vertical pipes over the range
107° < Grp, /(Re})’® PrV?) < 0.2. The correlation
moderately overpredicts the data of Watzinger and
Johnson [9] and Herbert and Sterns [10].

The literature discussed to this point has dealt with
either duct or pipe geometries of various vertical
aspect ratios covering a fairly wide range of flow par-

ameters. In this work, surface renewal theory has been
used to obtain a heat transfer correlation for opposing
mixed turbulent convection in vertical ducts. The cor-
relation applies to air, water and Freon 113 spanning
a parameter range of 0.7 < Pr < 7, 1 x10* < Re,, <
2% 10% and 1 x10° < Grp < 1x10°.

SURFACE RENEWAL THEORY

In recent years, surface renewal theory has been
used successfully by Thomas and co-workers [11-15]
to model fluid flow and heat transfer phenomena for
a variety of flow systems. Originally, the theory was
proposed by Higbie [16], Danckwerts {17] and
Einstein and Li [18]. The surface renewal concept
focuses on replenishing fluid in the thin layer near a
heated wall. The flow mechanism is depicted in Fig.
1. A clump of fluid enters the wall layer and impinges
on the wall where it remains stationary for a while.
After absorbing energy, the clump then bursts off the
wall and passes through the layer returning to the free
stream. Since most of the thermal resistance occurs
near the wall, an accurate description of the heat
transfer phenomena in this layer should produce a
good heat transfer correlation. The following con-
ditions are assumed to hold inside the wall layer:

(1) constant fluid properties;

(2) incompressible flow ;

(3) hydrodynamically and thermally fully
developed flow;

(4) boundary layer approximation;

(5) Boussinesq approximation;

(6) x-directed convective term in the energy
equation is small.
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FiG. 1. Surface renewal flow mechanism.

Conditions 3, 4 and 6 have been imposed based on
experimental observations found in ref. [21]. Utilizing
the above assumptions, the unsteady behavior of a
clump of fluid for two-dimensional parallel flow near
a wall can be described by

du op Grp, 1 3%
= a2 —_—— (4a)
ot Ox  Rep, Rey, 0oy
oT 1 é*T
= il 4
0t Pep 0y* (40)
with the following initial and boundary conditions
t=0; u=uy, T=T,
or
y=0; u=0, 5:——Nu,)h
. Ou_oT
y— 0, @y = 6y =

Note that the boundary condition at y = 0 imposes a
constant wall heat flux. Time averaged variables are
defined as

i= r u(t, 7)(0) dt

P= Jw P(t, x)(r) dt

T= J T(t, Y)$(r) dt

0
where ¢(?) is the contact time distribution function
which represents the fraction of eddies with a wall
contact time between ¢ and ¢+ d¢. Thomas has found
that Danckwerts’ random contact time distribution
[17] yields good results for turbulent flows, namely

B() = 1o

where 7 is the dimensionless mean wall residence time.
Multiplying equation set (4) by ¢(¢) and integrating
with respect to time from 0 to oo gives

11 dP Grp 1 d% 5
T dx__Ref,h Rep_dy? (32)
1. 1. 1 &T

S T G0

with boundary conditions

Ty
y=0, u=0, d—y=_NuD"
. dzz_dT_O

y—o 0, dy_dy—

The energy equation is independent of the momentum
equation and can be solved by inspection giving

_ Nup
=T+ e

7 ©)

)

This result is then substituted into equation (5a) which
is then solved by use of integrating factors giving

U= (ﬁ,-—‘c

where

dp Grp, _

— e A Y

dx TRe},h T')(l e
Grp, Nup 17

" ARz e
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where

-5

Aty =0, T = 1, and equation (6) becomes

Pr'’? Rey?

NuDh=b(1—7-})——T~—(1—T) ®)

Substituting this expression into equation (7) gives
dP Grp,
= i, — T ~—— —_ —ay
u -1 Fi Reph 11 )
Ty

Grp (1—
=R, €T O

The dimensioniess wall shear stress is defined as

da
0'0=d—y
1/2 =
_Re '_ 1/2 1/29_5_?2[11/2]—-,
L Dy dx  Re}? i
Grp, (1=T)t"? ppuz_j
o " L 0
Rep Pr—1

Noting that Pr—1= (Pr'/?—1)(Pr'/?+1), solving
equation (10) for 1/7"% and substituting the result
into equation (8) produces

(1= T 4Re”2 4
Nup, = 0.50, Pr 1+ 1+ 5
4 Oy

dp Grp, -
[Re})’hzdx m(l+Pr‘/2ﬂ)]>:|.

amn

In this equation T; and &, represent the initial tem-
perature and velocity, respectively, of a clump of fluid
impinging on the wall. These quantities are assumed
to be equal to the free stream values of ;=0 and
#; = 1. It should be noted however that the assump-
tion u; = 1 breaks down for high Pr since the inrushing
clump of fluid seldom moves into the direct contact
with the wall [15], thereby attenuating ;. The pressure
gradient and the wall shear stress can be defined in
terms of a forced convection friction factor given as

@ _ 7
dx 2
and
_ S
oo —Re,,hg.

Substituting these expressions and the assumed initial
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conditions into equation (11) produces

128
Rep, f

Nu,, = 0.0625fRe, Pr'’? [1 + \/(1 —

Grp, 1

From forced convection data (Kays and Crawford

()

f=4C;=0.184Re; 2.

Substituting this expression into equation (12) gives

Nuy = 0.0115Rep® Pro? [:1 + \/(1 -

Grp,

696

Rep?

RESULTS AND DISCUSSION

Equation (13) shows the variation in the forced
convection Nusselt number with the pressure gradient
and with an opposing buoyancy effect. Note that this
equation reduces to the Dittus—Boelter correlation
when the pressure and buoyancy terms are neglected.
The positive sign in front of the buoyancy term
accounts for the enhanced heat transfer associated
with opposing mixed turbulent flows.

It is interesting to compare the buoyancy term in
equation (13) and the one in Jackson and Fewster’s
correlation (equation (1)). The primary difference lies
in the Prandtl number dependence in the denomi-
nator. The theory derived in this work contains
Pr'/241 in the denominator while the Jackson and
Fewster correlation contains Pr'? in the denomi-
nator. Jackson and Fewster’s correlation under-
predicts both Axcell and Hall’s data [6] for air and
the data of Swanson and Catton [20] for Freon 113
by about 30% implying that the Prandtl number
dependence in the correlation may not be correct.

Figure 2 shows a comparison of equation (13) with
data for air, Freon 113, and Jackson and Fewster’s
correlation for water (Pr = 2.25). The average density
in Jackson and Fewster’s correlation was approxi-
mated by substituting the Boussinesq approximation
for the local density in equation (3). The bulk tem-
perature (7,) was assumed to be equal to the free
stream temperature since velocity and temperature
distributions were not explicitly given. Equation (13),
based solely on a forced convection friction factor,
agrees with the data for Grp /Rej®(Pr®’+1) <
5x10~*. Above this point, the forced flow friction
factor law breaks down due to the buoyancy effect
in the wall layer. The data indicate that the mixed
friction factor is less than the forced friction factor
for the same Reynolds number. This deviation can
be accounted for in equation (13) by adjusting both
the coefficient multiplying the mixed convection
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=== Correlation of Jackson and Fewster (Water - Pr = 2,25}
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Fi6. 2. Comparison of theory to data for various Prandtl number fluids.
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dimensionless group and the power law dependence.
The resulting correlation is given by

696
Re}?

Grp, 0.39

Nup, = 0.0115Re}® Pr®* {1+ [1 -

with less than a 7% r.m.s. error, which is well within
the experimental error of 12%. This function is shown
to fit the data for air, water and Freon 113 very well
in Fig. 2. The mean wall residence time can now be
evaluated by solving for T with T; = 0 in equation (8)
giving
Rep, Pr

Substituting equation (14) for Nu,_ in equation (15)
produces

7561Re; "¢

696 Grp, 039
1+{1- Rel 03+830 m (16)

This expression for the dimensionless mean wall resi-
dence time distribution is plotted in Fig. 3 as a func-
tion of the mixed flow dimensionless group with the
Reynolds number as a parameter. The figure shows
that the mean wall residence time distribution
decreases as both Grp /Rej®(Pr®*+1) and Rep
increase. This behavior is due to the enhanced mixing
caused by either the increased opposing buoyancy
force or the increased viscous shearing force. The
heat transfer also increases since the fluid is being

T =

exchanged more frequently on the wall.

Now that © is known, the velocity profile can be
evaluated after setting T; = 0 and &, = 1 in equation
(9). Utilizing the forced friction factor relationship for
dP/dx produces

0.092
a=<1+R 021)(1— e=)

Grp, T R
“@E—Reg, ) (D

where 7 is evaluated from equation (16). It should be
noted that a singularity occurs in this expression for
Pr=1. Applying I'Hopital’s rule to the buoyancy
term for Pr = 1 yields

TOAS

0.092 Grp,
—ayN._ —ay
(1+1: )(1 ) ey (18)

The expression for the temperature profile is deter-
mined by setting T; = 0 in equation (6) and noting
that Nu, = b in equation (8). The temperature dis-
tribution simply becomes

T=e Yy, (19)

It should be noted that equations (17)—(19) are valid
only near the wall and become less dependable as the
free stream is approached. Equations (17) and (19)
are plotted to demonstrate the parametric trends
associated with the near wall flow field.

Figure 4 shows the variation of the velocity profile
with the Reynolds number for constant Grashof and
Prandtl numbers. The velocity and temperature pro-
files are not expressed in terms of the inner spacial
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F1G. 3. Mean wall residence time as a function of the mixed dimensionless group with the Reynolds number
as a parameter.

variable (y*) since it is possible that the value of the
shear at the wall is equal to zero. As expected, the
effect of the buoyancy force near the wall increases as
the Reynolds number is decreased. This effect mani-
fests itself by decreasing the velocity near the wall. For
this set of parameters, the buoyancy effect becomes so
strong that a mean velocity flow reversal occurs in the
neighborhood of Re, = 1x10% At this point, the
fluid flows upward near the wall in the negative direc-
tion. These flows tend to steepen the velocity profile
near the edge of the boundary layer causing the
enhanced mixing alluded to earlier. As the Reynolds
number continues to decrease, the minimum value of
the velocity moves outward away from the wall. Fig-
ure 4 also shows that the momentum boundary layer
thickness increases with decreasing Reynolds number.

Figure 5 shows the temperature profile for various
Reynolds numbers with the Grashof number and
Prandtl number constant. The figure shows that the
thermal boundary layer, in general, decreases with
increasing Reynolds number. However, for this par-
ticular set of parameters, Reynolds numbers of 5 x 103
and 1 x 10* produce the same temperature profile. In
this case, the Nusselt number given by equation (14)
remains constant because the decrease in Reynolds
number increases Grp, /Re*(Pr®®+ 1) enough to bal-
ance the decrease in Re}® outside the brackets. This
phenomena arises because the degree of fluid mixing
which determines the heat transport is dependent on
both the buoyancy force and the viscous shearing
force. The relative increase in buoyancy at
Rep = 5x10* produces the same amount of mixing
as the relative increase in viscous shearing at
Rep = 1x10%.

Figure 6 shows the velocity profile for constant
Reynolds and Prandtl numbers with the Grashof

<l

0 | |
1074 10-3 102

107!
¥

F1G. 4. Variation of the velocity profile with the Reynolds
number for constant Grashof and Prandtl numbers.

number as a parameter. The profiles indicate that the
momentum boundary layer thickness decreases as the
Grashof number increases. This seems somewhat con-
trary to intuition since one would expect the
additional shearing due to the downward flowing free
stream to thicken an upward flowing buoyant layer.
However, experimental observations (see Swanson
[21]) indicate that the buoyant layer is actually sheared
off near the upper leading heated edge inducing rapid
momentum boundary layer development on the order
of one hydraulic diameter in length. The buoyant layer
thickness remains constant beyond this point. These
observations suggest that the increased shearing actu-
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FiG. 5. Temperature profiles for various Reynolds numbers
for a constant Grashof number and Prandtl number.
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F1G. 6. Velocity profiles for constant Reynolds and Prandtl
numbers with the Grashof number as a parameter.

ally reduces the momentum boundary layer thickness
and increases mixing within the layer. Figure 7 shows
that the increased mixing due to buoyancy manifests
itself in reducing the thermal boundary layer thick-
ness, thus enhancing heat transfer.

Figure 8 shows the effect of the Prandtl number on
the velocity profile. As the Prandtl number decreases,
the buoyancy effect increases and the minimum point
in the mean velocity moves outward toward the free
stream. This is expected since the buoyancy term in
equation (18) is inversely proportional to (Pr—1). It
Is interesting to note that the momentum boundary
layer thickness remains relatively constant as the

22717
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FiG. 7. Temperature profiles for constant Reynolds and
Prandtl numbers with the Grashof number as a parameter.
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F1G. 8. Velocity profiles for constant Reynolds and Grashof
numbers with the Prandtl number as a parameter,

Prandtl number is varied. Figure 9 shows that decreas-
ing the Prandtl number increases the thermal bound-
ary layer thickness. As the thermal boundary layer
thickens, warmer fluid extends further outward toward
the free stream which produces the thicker upward
flowing buoyant layer shown in Fig. 8.

CONCLUSIONS

A study of opposing mixed turbulent convection in
vertical ducts was conducted utilizing surface renewal
theory. The heat transfer correlation was found to be
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FiG. 9. Temperature profile for constant Reynolds and
Grashof numbers with the Prandt! number as a parameter.

696

Rejp®

Grp, 0.39

The correlation fit the data to within 7% over a par-
ameter range of 0.7<Pr<7, 1x10*°<Re, <
2x10* and 1x10° < Grp <2x10°. The surface
renewal mechanism provided valuable insight into
the physics of turbulent flow phenomena in the
wall layer. The mean residence time, characterizing
the time a clump of fluid resides on the wall, was
found to decrease as both Grp /[Rejé(Pr®*+1) and
Re,, increase. This explains the enhanced heat trans-
fer due to buoyancy in opposing mixed turbulent
flows. This heat transfer enhancement was also
reflected in a decreasing thermal boundary layer thick-
ness with increasing Re,, , Grp, or Pr.

Nup, = 0.0115Rep} Pr** {1 + [1

+8300
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THEORIE DU RENOUVELLEMENT DE SURFACE POUR LA CONVECTION
TURBULENTE MIXTE DANS DES TUBES VERTICAUX

Résumé—Une formule de transfert thermique pour la convection turbulente mixte avec opposition, dans
des tubes verticaux, est obtenue a partir d’une théorie de renouvellement de surface :

N 0.0115Re% Prs {1+ 1 696 830 Grp, 0,39
Uup, =0, ip0s) 112 8% g0 .
Dy €p, 17 Reg.hs Ref;‘hﬁ(Pr°'5+1)

La formule représente les données 4 7% prés pour un domaine 0,7 < Pr < 7; 1.10* < Re, < 2.10*

et 1.10° < Gr, < 2.10°. Le temps de s&jour, caracterisant le temps de résidence d’une particule fluide sur

la paroi, décroit aussi bien lorsque Gry, /Re5® (Pr®’+1) et Rep, augmentent. Ceci explique 'amélioration

du transfert thermique due au flottement dans les écoulements turbulents mixtes avec opposition. L’ac-

croissement de transfert est aussi reflété par la diminution de I’épaisseur de la couche limite thermique
quand augmentent Rep,, Grp, ou Pr.

OBERFLACHEN-ERNEUERUNGS-THEORIE BEI DER TURBULENTEN
MISCH-KONVEKTION IN SENKRECHTEN KANALEN

Zusammenfassung—Unter Anwendung der Oberflichen-Erneuerungs-Theorie wurde eine Wirme-
ibergangs-Korrelation fiir die gegengerichtete turbulente Misch-Konvektion in senkrechten Kanilen
gefunden :

Nug, = 00115 Relt pros{ 1 4] 1= 8% L g300 ¥
up =0, .8 pp.0, .
’ - Rep! Re3S(ProS+1)

Die Korrelation zeigt eine maximale Abweichung von sieben Prozent fiir folgende Parameter-Bereiche :
07<Pr<7,1 10°<Re, <2 10* und 1 10° < Grp, <2 10°. Die mittlere Aufenthaltsdauer eines
Fluidteilchens an der Behilterwand, nimmt mit wachsenden Werten von Grp /Ref(Pr®’+1) und Re,,
ab. Dies erklirt die Tatsache, daBl der Wirmeiibergang bei gegengerichteter turbulenter Misch-Konvektion
durch Auftrieb verbessert wird. Die Verbesserung der Warmeiibertragung wird auch durch die abnehmende
Grenzschichtdicke mit zunehmenden Werten von Rep,, Gry, oder Pr bestitigt.

TEOPUSI OBHOBJIEHMA TTOBEPXHOCTH NPUMEHHMTEJIBHO K TYPBYJIEHTHOHU
CMEMAHHOW KOHBEKLIMU B BEPTHMKAJIBHBIX KAHAJIAX

AmporamEs—C NOMOILBIO TEOPHH OOHOBJIEHHS MOBEPXHOCTH MOJYYEHO NOJYIMITHPHYECKOE COOTHOLLE-
HHe AN TeiooGMeHa B Cy4ae MPOTHBOMOJIOXKHO HANPABJICHHOR CMeIIaHHON TYpOyJIeHTHOH KOHBEK-
MK B BEPTHKAJIbHBIX KaHaiaX. COOTHOILIEHHE HMeeT BHI

6 Gr 0,39
- 8300 D .
Red® + RelS(Pro* + l)] }

Nup, = 0,0115Re(® Pr°"{1 + [1

OHO COTJIACYeTCs ¢ 3KCMEPUMEHTANBHBIMH AAaHHBIMH C TOYHOCTBIO 10 7% B CIEOYIOLUIMX QHAfla30HAX
n3MeHenus napamerpoB: 07 <Pr<7, 1x10°<Rep <2x10* n 1 x10%< Grp, <2 x 10°
HaiineHo, 4To cpenHee BpemMs OGHOBJICHHS, XapaKTepH3ylolllee BPEMs KOHTAaKTa XHIKOCTH, BHOCHMOM
3 BHEIIHel 0671acTH, CO CTEHKOH, yMEHbIIACTCs ¢ yBesmuenneM Grp, /RebS(Pr®® + 1) u Rep, . 310 06ic-
TOATEJILCTBO OOBACHAET yBEIMYCHHE MHTEHCHBHOCTH TEMLUIOOOMEHa 3a CHET eCTECTBEHHOH KOHBCKIHH B
NPOTHBONOJIOXKHO HANpPABJIEHHBIX TYpOYIEHTHBIX DOTOKaX NpH cMemaHHo# konpekund. Takoe yBesmnue-
HHE TEIUIOO6MEHA COIJIACYETCS C YMEHBLIEHHEM TOJILUMHLI TENJI0BOr0 NOrPaHMYHOro CJOA MPH BO3pac-
TaHud Rep, , Grp, u Pr.
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