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Abstract-A heat transfer correlation for opposing mixed turbulent convection in vertical ducts was 
obtained utilizing surface renewal theory. The correlation was found to be 

Nu = 0.0115Re”~8Pr0 ’ 
GrDb 0 39 

Dl’ Oh Re&6(Pr0.5 + 1) 1 I 
The correlation fit data to within 7% over a parameter range of 0.7 < Pr < 7, 1 x lo4 < Refh -C 2 x 104, 

and 1 x lo6 < GrDh < 2 x 109. The mean residence time, characterizing the time a clump of flmd resides on 
the wall, was found to decrease as both GrDJRe&6(Pro.5 + 1) and ReDb increase. This explains the enhanced 
heat transfer due to buoyancy in opposing mixed turbulent flows. This heat transfer enhancement was also 

reflected in a decreasing thermal boundary layer thickness with increasing ReDh, GrD, or Pr. 

INTRODUCTION 

COMBINED turbulent convection refers to fluid flow 
influenced by both buoyancy forces and dynamic pres- 
sure forces. The buoyancy forces can act in either the 
same (aiding) or opposite direction (opposing) to the 
dynamic pressure forces. In heated vertical ducts with 
equal wall temperatures or equal wall heat fluxes sym- 
metry can be imposed and the duct half width becomes 
the characteristic dimension. The density gradient 
across the duct half width, due to the difference in the 
wall and free stream temperatures, drives the buoyant 
layer upward near the hot wall. This layer entrains 
fluid from the downward flowing free stream. The net 
mass flow through the duct, which remains constant, 
determines the magnitude of the forced flow. The 
main concern in these flow systems lies in how these 
opposing forces influence flow structure and heat 
transfer. 

Studies of mixed turbulent flows conducted over 
the past 50 years have dealt with either air or water 
flowing in horizontal or vertical ducts and tubes. 
Nakajima et al. [l] examined turbulent mixed con- 
vection between parallel vertical plates for air both 
experimentally and theoretically. Both aiding and 
opposing buoyancy flows were treated for fully 
developed flow with Gr/Re2 < 2 x 10-2. Results 
showed that the Nusselt number increased with 
increasing Gr/Re* (based on duct width) for forced 
flow with an opposing buoyancy force, and decreased 
with increasing Gr/Re* for forced flow with an aiding 
buoyancy force. This phenomenon was attributed to 
an increasing velocity fluctuation (eddy size) in oppos- 
ing flow and vice versa for aiding flow. Theoretically, 
Nakajima et al. derived a modified Van Driest damp- 

ing factor which incorporated a buoyancy force in a 
non-isothermal field for fully developed flow. This 
damping factor was used in conjunction with the 
forced convection ‘mixing length’ theory of Cebeci [2] 
to model turbulence via an eddy diffusivity. Nakajima 
et al. noted that the model contained a shortcoming 
found in most eddy diffusivity models ; namely, that 
turbulent diffusion goes to zero at a maximum or 
minimum point in the velocity field. In many cases 
combined turbulent flow fields display both maximum 
and minimum flow velocities where turbulent 
diffusion cannot be neglected. Doshi and Gill [3] have 
developed an improved mixing length theory which 
alleviates this shortcoming for purely forced convec- 
tion. Even though Nakajima et aZ.‘s model incor- 
porates buoyancy effects into the damping factor, it 
seems that these forces should also be included in the 
actual ‘mixing length’ theory as proposed by Oos- 
thuizen [4] for vertical plates. Despite these 
arguments, the theoretical predictions of heat transfer 
and the distribution of eddy diffusivity showed good 
agreement with experimental data. 

Jackson and Fewster [5] studied turbulent mixed 
convection for water flowing in vertical tubes both 
experimentally and theoretically. A similar theoretical 
approach for the same geometry has been presented 
in Axcell and Hall [6] for air and Jackson [7] for liquid 
metals. Jackson’s method combined the buoyancy 
force with the shear stress by evaluating the change in 
shear stress across the buoyant layer given by the 
integral 

&, = 
I 
:” (pb -p)g dy. 

Adding the change in shear stress across the buoyant 
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NOMENCLATURE 

G coefficient of friction Greek symbols 
D duct half width thermal diffusivity 

Dh hydraulic diameter (40) ; thermal expansion coefficient 

9 gravitational constant 6 buoyant layer thickness 

Gro, Grashof number, gp(T,*- T~)D~/v* V kinematic viscosity 

NQ, Nusselt number, q,D,/k(T~- T;“) P density 
P pressure, P*/pu& 0 shear stress, o*/pu&, 

PeDh Peclet number, Pr ReDh ? mean walk residence time, z*u,,JD,. 
Pr Prandtl number, V/N 

4 heat flux 
Subscripts 

ReDh Reynolds number, uaveDh/v 
ave average 

t time, f*u,,,/D,, 
b bulk 

T temperature, (T* - T,*)/( T,*- T$) Dll hydraulic diameter 

x-directed velocity, u*/u,,, 
e free stream 

U wall 
X vertical spatial coordinate parallel to the 

duct walls, x*/D,, 
; value for pure force convection. 

Y spatial coordinate perpendicular to the Superscripts 
duct walls, y*/D,. * dimensional quantity. 

layer to the shear stress at the wall yielded a modified 
shear stress which was used to modify the forced con- 
vection heat transfer correlation (Nu,,,~) of Petukhov 
and Kirillov [8]. By proper parameter adjustment, the 
correlation was made to fit data over a wide mixed 
flow parameter range. The correlation was found to 
be 

NUDE 
___ = (1 +4500GrDh Re;:‘/* Pr- “2)o.3’ 
NUoh,o 

(1) 

where 

ReDh Pr + 

NUD~,O = 

12.7 + 
0 

“’ (Pr2’3 -I)+ 1.07 

1 

” = (3.64 log,, ReDh-3.28)* (2) 

G’,, = @b-d& 

pbv3 

and 

1 

s 

Tb 

’ = T, - Tb 
p dT. 

T, 

The above relationship agrees very well with data for 
water flowing in vertical pipes over the range 
10e5 < Gr,J(ReA:‘* Pr”‘) < 0.2. The correlation 
moderately overpredicts the data of Watzinger and 
Johnson [9] and Herbert and Sterns [lo]. 

The literature discussed to this point has dealt with 
either duct or pipe geometries of various vertical 
aspect ratios covering a fairly wide range of flow par- 

ameters. In this work, surface renewal theory has been 
used to obtain a heat transfer correlation for opposing 
mixed turbulent convection in vertical ducts. The cor- 
relation applies to air, water and Freon 113 spanning 
a parameter range of 0.7 < Pr < 7, 1 x lo4 < ReDh < 
2 x 104, and 1 x lo6 < GrD, < 1 x 109. 

SURFACE RENEWAL THEORY 

In recent years, surface renewal theory has been 
used successfully by Thomas and co-workers [ 1 l-l 51 
to model fluid flow and heat transfer phenomena for 
a variety of flow systems. Originally, the theory was 
proposed by Higbie [16], Danckwerts [17] and 
Einstein and Li [18]. The surface renewal concept 
focuses on replenishing fluid in the thin layer near a 
heated wall. The flow mechanism is depicted in Fig. 
1. A clump of fluid enters the wall layer and impinges 
on the wall where it remains stationary for a while. 
After absorbing energy, the clump then bursts off the 
wall and passes through the layer returning to the free 
stream. Since most of the thermal resistance occurs 
near the wall, an accurate description of the heat 
transfer phenomena in this layer should produce a 
good heat transfer correlation. The following con- 
ditions are assumed to hold inside the wall layer : 

(1) constant fluid properties ; 
(2) incompressible flow ; 
(3) hydrodynamically and thermally fully 

developed flow ; 
(4) boundary layer approximation ; 
(5) Boussinesq approximation ; 
(6) x-directed convective term in the energy 

equation is small. 
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FIG. I. Surface renewal flow mechanism. 

Conditions 3, 4 and 6 have been imposed based on 
experimental observations found in ref. [21]. Utilizing 
the above assumptions, the unsteady behavior of a 
clump of fluid for two-dimensional parallel flow near 
a wall can be described by 

au ap GrD,, T I 1 a2u 
-=-- 
at ax Re& ReDh aY2 

(44 

aT 1 a2T 

at=Pe,,ayZ 
WI 

with the following initial and boundary conditions 

t=O; u=ui, T=T, 

Y=o; U=o, aT= -Nu,, ay 
au aT=o. y-a; &j=ay 

Note that the boundary condition at y = 0 imposes a 
constant wall heat flux. Time averaged variables are 
defined as 

m 
c= 

f 
u(t, v)$(t) dt 

0 

p= 
5 

m 
J’(t> x)4(0 dt 

0 

I 

30 
ii+‘= T(t, y)&t) dt 

II 

where 4(t) is the contact time distribution function 
which represents the fraction of eddies with a wall 
contact time between t and t+dt. Thomas has found 
that Danckwerts’ random contact time distribution 
[ 171 yields good results for turbulent flows, namely 

where z is the dimensionless mean wall residence time. 
Multiplying equation set (4) by 4(t) and integrating 
with respect to time from 0 to co gives 

- Gr, _ f&f&= _!&#+Ie (ja) 

4 ReDh dy 

with boundary conditions 

y=o; ii=& ~T=-NuD, 
dy 

du dT 
y-*co; -Z-_-O. 

dy dy 

The energy equation is independent of the momentum 
equation and can be solved by inspection giving 

where 

b_J(Ey. 

This result is then substituted into equation (5a) which 
is then solved by use of integrating factors giving 

- GrD _ 
U = zJ-T~ -T~I; (1 -emuJ’) 

Dh 

GrDh NuDh zxi2 
- 

Pr’i2(Pr- l)Reir ( 
e-~Y_e-by ) (7) 
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where conditions into equation (11) produces 

a= 

At y = 0, T = 1, and equation (6) becomes 

pr”2 Rel’2 

NuDh = 6(1- Fi) = r,,2 4 (1-Z). (8) 

Substituting this expression into equation (7) gives 

- GrD _ 
U= ii,---r~--i~T, 

Dh 

- ~~!‘l~R~~ (e-Q -embY), (9) 
h 

The dimensionless wall shear stress is defined as 

dl 

u” =dy 

Gr,h(l-Fi)r”2 prr/2_l 
- 

Reg: Pr-l’ (10) 

Noting that Pr- 1 = (Pr’12- l)(Pr”‘+ l), solving 
equation (10) for l/~‘/~, and substituting the result 
into equation (8) produces 

NuDh = 0.5~~ Pr’12 (!$)[l+/(l+4T 

(11) 

In this equation Ti and fii represent the initial tem- 
perature and velocity, respectively, of a clump of fluid 
impinging on the wall. These quantities are assumed 
to be equal to the free stream values of Ti = 0 and 
z& = 1. It should be noted however that the assump- 
tion ui = 1 breaks down for high Pr since the inrushing 
clump of fluid seldom moves into the direct contact 
with the wall [ 151, thereby attenuating ui. The pressure 
gradient and the wall shear stress can be defined in 
terms of a forced convection friction factor given as 

and 

dP f -- 
z= 2 

00 = ReDhi. 

Substituting these exnressions and the assumed initial 

Nug, = O.O625fRe,, Pr”* 
128 

1 - __ 
ReDh f 

Gro, 1 
+256Re;h(Pr"'+l)f2 )I ' (12) 

From forced convection data (Kays and Crawford 

1191) 

f = 4CI = 0.184Re;:2. 

Substituting this expression into equation (12) gives 

Nu =00115Re0.*Pro5 D, . 4 1-g 
4 

f7561 
GrDh 

Re&6(Pr0-5 + 1) . (13) 
RESULTS AND DISCUSSION 

Equation (13) shows the variation in the forced 
convection Nusselt number with the pressure gradient 
and with an opposing buoyancy effect. Note that this 
equation reduces to the Dittus-Boelter correlation 
when the pressure and buoyancy terms are neglected. 
The positive sign in front of the buoyancy term 
accounts for the enhanced heat transfer associated 
with opposing mixed turbulent flows. 

It is interesting to compare the buoyancy term in 
equation (13) and the one in Jackson and Fewster’s 
correlation (equation (1)). The primary difference lies 
in the Prandtl number dependence in the denomi- 
nator. The theory derived in this work contains 
Pr”‘+ 1 in the denominator while the Jackson and 
Fewster correlation contains Pr”2 in the denomi- 
nator. Jackson and Fewster’s correlation under- 
predicts both Axcell and Hall’s data [6] for air and 
the data of Swanson and Catton [20] for Freon 113 
by about 30% implying that the Prandtl number 
dependence in the correlation may not be correct. 

Figure 2 shows a comparison of equation (13) with 
data for air, Freon 113, and Jackson and Fewster’s 
correlation for water (Pr = 2.25). The average density 
in Jackson and Fewster’s correlation was approxi- 
mated by substituting the Boussinesq approximation 
for the local density in equation (3). The bulk tem- 
perature (r,) was assumed to be equal to the free 
stream temperature since velocity and temperature 
distributions were not explicitly given. Equation (13), 
based solely on a forced convection friction factor, 
agrees with the data for Gr,h/Re2:(Pro-5+ 1) < 
5 x 10m4. Above this point, the forced flow friction 
factor law breaks down due to the buoyancy effect 
in the wall layer. The data indicate that the mixed 
friction factor is less than the forced friction factor 
for the same Reynolds number. This deviation can 
be accounted for in equation (13) by adjusting both 
the coefficient multiplying the mixed convection 
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0 Data of Axcell and Hall (Air - Pr - 0.7) 
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FIG. 2. Comparison of theory to data for various Prandtl number fluids. 

dimensionless group and the power law dependence. 
The resulting correlation is given by 

NuD, = O.O115Re$f Pr0.5 1 - g 
Q, 

0.39 

+ 8300 
GrDh 

Re&(Pr0,5 + 1) 1 I (14) 

with less than a 7% r.m.s. error, which is well within 
the experimental error of 12%. This function is shown 
to fit the data for air, water and Freon 113 very well 
in Fig. 2. The mean wall residence time can now be 
evaluated by solving for r with Fi = 0 in equation (8) 
giving 

Re, Pr 
(15) 

Substituting equation (14) for NuD, in equation (15) 
produces 

7561Re-0.6 D. 
II 

+ 8300 
Gb, 0.39 2’ 

Re&6(Pro.5 + 1) >I (16) 
This expression for the dimensionless mean wall resi- 
dence time distribution is plotted in Fig. 3 as a func- 
tion of the mixed flow dimensionless group with the 
Reynolds number as a parameter. The figure shows 
that the mean wall residence time distribution 
decreases as both GrDh/Re&b(Pro.5+ 1) and Re, 
increase. This behavior is due to the enhanced mixing 
caused by either the increased opposing buoyancy 
force or the increased viscous shearing force. The 
heat transfer also increases since the fluid is being 

exchanged more frequently on the wall. 
Now that t is known, the velocity profile can be 

evaluated after setting Ti = 0 and Is, = 1 in equation 
(9). Utilizing the forced friction factor relationship for 
dp/dx produces 

ii= (l+!$jr)(l-e-oY) 

GrDh 7 
- (pr_ 1jRei Wa~-e-*9 (17) 

h 

where z is evaluated from equation (16). It should be 
noted that a singularity occurs in this expression for 
Pr = 1. Applying 1’Hopital’s rule to the buoyancy 
term for Pr = 1 yields 

The expression for the temperature profile is deter- 
mined by setting Ti = 0 in equation (6) and noting 
that NuDh = b in equation (8). The temperature dis- 
tribution simply becomes 

i; = e-N*DhY. (19) 

It should be noted that equations (17~( 19) are valid 
only near the wall and become less dependable as the 
free stream is approached. Equations (17) and (19) 
are plotted to demonstrate the parametric trends 
associated with the near wall flow field. 

Figure 4 shows the variation of the velocity profile 
with the Reynolds number for constant Grashof and 
Prandtl numbers. The velocity and temperature pro- 
files are not expressed in terms of the inner spatial 
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FIG. 3. Mean wall residence time as a function of the mixed dimensionless group with the Reynolds number 
as a parameter. 

variable (JJ’) since it is possible that the value of the 
shear at the wall is equal to zero. As expected, the 
effect of the buoyancy force near the wall increases as 
the Reynolds number is decreased. This effect mani- 
fests itself by decreasing the velocity near the wall. For 
this set of parameters, the buoyancy effect becomes so 
strong that a mean velocity flow reversal occurs in the 
neighborhood of ReDh = 1 x 104. At this point, the 
fluid flows upward near the wall in the negative direc- 
tion. These flows tend to steepen the velocity profile 
near the edge of the boundary layer causing the 
enhanced mixing alluded to earlier. As the Reynolds 
number continues to decrease, the minimum value of 
the velocity moves outward away from the wall. Fig- 
ure 4 also shows that the momentum boundary layer 
thickness increases with decreasing Reynolds number. 

Figure 5 shows the temperature profile for various 
Reynolds numbers with the Grashof number and 
Prandtl number constant. The figure shows that the 
thermal boundary layer, in general, decreases with 
increasing Reynolds number. However, for this par- 
ticular set of parameters, Reynolds numbers of 5 x lo3 
and 1 x lo4 produce the same temperature profile. In 
this case, the Nusselt number given by equation (14) 
remains constant because the decrease in Reynolds 
number increases GrDh/Re&6(Pr0.5 + 1) enough to bal- 
ance the decrease in Re&’ outside the brackets. This 
phenomena arises because the degree of fluid mixing 
which determines the heat transport is dependent on 
both the buoyancy force and the viscous shearing 
force. The relative increase in buoyancy at 
Re,,, = 5 x 10’ produces the same amount of mixing 
as the relative increase in viscous shearing at 
ReDh = 1 x 104. 

Figure 6 shows the velocity profile for constant 

0.4 

ii 

0.6 

1.0 

01 

10-4 109 10-2 10-l 

Y 

FIG. 4. Variation of the velocity profile with the Reynolds 
number for constant Grashof and Prandtl numbers. 

number as a parameter. The profiles indicate that the 
momentum boundary layer thickness decreases as the 
Grashof number increases. This seems somewhat con- 
trary to intuition since one would expect the 
additional shearing due to the downward flowing free 
stream to thicken an upward flowing buoyant layer. 
However, experimental observations (see Swanson 
[21]) indicate that the buoyant layer is actually sheared 
off near the upper leading heated edge inducing rapid 
momentum boundary layer development on the order 
of one hydraulic diameter in length. The buoyant layer 
thickness remains constant beyond this point. These 

Reynolds and Prandtl numbers with the Grashof observations suggest that the increased shearing actu- 
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FIG. 5. Temperature profiles for various Reynolds numbers FIG. 7. Temperature profiles for constant Reynolds and 
for a constant Grashof number and Prandtl number. Prandtl numbers with the Grashof number as a parameter. 

ii 

10-4 10-3 10-Z 10-l 

FIG. 

V 

6. Velocity profiles for constant Reynolds and Prandtl 
numbers with the Grashof number as a parameter. 

ally reduces the momentum boundary layer thickness 
and increases mixing within the layer. Figure 7 shows 
that the increased mixing due to buoyancy manifests 
itself in reducing the thermal boundary layer thick- 
ness, thus enhancing heat transfer. 

Figure 8 shows the effect of the Prandtl number on 
the velocity profile. As the Prandtl number decreases, 
the buoyancy effect increases and the minimum point 
in the mean velocity moves outward toward the free 
stream. This is expected since the buoyancy term in 
equation (18) is inversely proportional to (Pr- 1). It 
is interesting to note that the momentum boundary 
layer thickness remains relatively constant as the 

ii 

1 

I I I 

10-4 10-3 10-2 10-l 

V 

FIG. 8. Velocity profiles for constant Reynolds and Grashof 
numbers with the Prandtl number as a parameter. 

Prandtl number is varied. Figure 9 shows that decreas- 
ing the Prandtl number increases the thermal bound- 
ary layer thickness. As the thermal boundary layer 
thickens, warmer fluid extends further outward toward 
the free stream which produces the thicker upward 
flowing buoyant layer shown in Fig. 8. 

CONCLUSIONS 

A study of opposing mixed turbulent convection in 
vertical ducts was conducted utilizing surface renewal 
theory. The heat transfer correlation was found to be 



2278 L. W. SWANSON and I. CATTON 
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FIG. 9. Temperature profile for constant Reynolds and 
Grashof numbers with the Prandtl number as a parameter. 

Nu = 0 0115Re0-sPr0-5 o, . 4 

+ 8300 
GrDh 0.39 

Re&6((Pro.5 + 1) I> 

The correlation fit the data to within 7% over a par- 
ameter range of 0.7 < Pr < 7, 1 x IO4 < ReD, < 
2 x 10“ and 1 x lo6 < GrD, < 2 x 109. The surface 
renewal mechanism provided valuable insight into 
the physics of turbulent flow phenomena in the 
wall layer. The mean residence time, characterizing 
the time a clump of fluid resides on the wall, was 
found to decrease as both GrDh/Ref;6(Pro.‘+l) and 
ReDh increase. This explains the enhanced heat trans- 
fer due to buoyancy in opposing mixed turbulent 
flows. This heat transfer enhancement was also 
reflected in a decreasing thermal boundary layer thick- 
ness with increasing ReDh , GrDh or Pr. 
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THEORIE DU RENOUVELLEMENT DE SURFACE POUR LA CONVECTION 
TURBULENTE MIXTE DANS DES TUBES VERTICAUX 

RCmn&-Une formule de transfert thermique pour la convection turbulente mixte avec opposition, dans 
des tubes verticaux, est obtenue a partir dune theorie de renouvellement de surface : 

0339 

Nu 
0, 

= 0 01 
’ 

15Re0a8Pr 
4 

l-~+~300Re’.e(Pr”,‘+l) GrD, 1 I 4 4 

La formule represente les don&es a 7% pres pour un domaine 0,7 < Pr < 7; 1. lo4 < Re,,, < 2. lo4 
et 1. lo6 < Gr,* < 2. 109. Le temps de sejour, caracterisant le temps de residence dune particule fluide sur 

la paroi, dtcrolt aussi bien lorsque G~,JR~T~~~ (Pro,‘+ 1) et ReDh augmentent. Ceci explique l’amelioration 
du transfert thermique due au flottement dam les ecoulements turbulents mixtes avec opposition. L’ac- 
croissement de transfert est aussi reflete par la diminution de l’epaisseur de la couche limite thermique 

quand augmentent ReDh,GrD, ou Pr. 

OBERFLACHEN-ERNEUERUNGS-THEORIE BE1 DER TURBULENTEN 
MISCH-KONVEKTION IN SENKRECHTEN KANALEN 

Zusammenfassung-Unter Anwendung der Oberllachen-Erneuerungs-Theorie wurde eine Wlrme- 
iibergangs-Korrelation fiir die gegengerichtete turbulente Misch-Konvektion in senkrechten Kanalen 
gefunden : 

Nu =00115Re’~*Pr 4 ’ 4, 
0.39 

’ -$ Gr, 
Dh +8300Re2 1 I 4 6(prt,,5+1) 

Die Korrelation zeigt eine maximale Abweichung von sieben Prozent fiir folgende Parameter-Bereiche : 
0,7 < Pr < 7 , 1 lo4 < Re, i 2 lo4 und 1 lo6 < Gr4 < 2 109. Die mittlere Aufenthaltsdauer eines 
Fluidteilchens an der Behalterwand, nimmt mit wachsenden Werten von GrD,/Re~(Pr”~S+ 1) und Re, 
ab. Dies erklart die Tatsache, dal3 der Wlrmeiibergang bei gegengerichteter turbulenter Misch-Konvektion 
durch Auftrieb verbessert wird. Die Verbesserung der Warmeiibertragung wird such durch die abnehmende 

Grenzschichtdicke mit zunehmenden Werten von Re4, GrDh oder Pr bestltigt. 

TEOPIDI OEHOBJIEHMR I-IOBEPXHOCTH IIPMMEHMTEJIbHO K TYP6YJIEHTHOR 
CMEIIIAHHOR KOHBEKI&IH B BEPTHKAJIbHbIX KAHAJIAX 

,&onTa& IIOMOIUbiO TeOpHH o6Hoenewn lIOBepXHOCTH IlOJIy'ieHO nOJly3MnHpHWCKOeCOOTHOme- 

HHe JJJI~ reruroo6t+rena B cnygae npOTHBOnOJlOKCiiO HalIpaBJIeHHOfi CMemaHHOP Typ6yJIeHTHOk KOHBeK- 

~HBLW~THEaJIbHblXKaHaJ,aX.COOTHOmeHHeHMeeTBHn 

Nu,, = O,OllSRek* Pr0e5 1 - s + 8300 Gr, & Rez(Prov5 + 1) . 

OH0 COr,IaCyeTCR C 3KCnepHMeHTaJIbHblMH IXiHHbIMU C TOYHOCTbH) A0 7% B CnenyWUHX IUIana30HaX 

H3MeHeHHff napaMerpos: 0,7cPr<7, 1 x 104<Re,,<2x lo* H 1 x 106cGrqc2x log. 
HakeHo, ST0 CpeZ(Hee BpeMff 06HOBJIeHHa, XapaICTepEi3ylomee BpeMa KOHTaKTa KWZKOCTH, BHOCHMOii 

u3 BHemHeZi o6nacTu,co CTeHKOfi, yMeribmaeTcn c ysenuqeHHeM Gr~Re&6(Pro*’ + 1) H Re,. *o 060 
TOIlTenbCTBO o6ancmez yBeJIHqeHHe HHTeHCHBHOCTB Tennoo6MeHa 38 C9eT WTSTBeHHOii KOHBeKUHH B 

npOTHBOnO,IOXHO HanpaBneHHbIX Typ6yJIeHTHbIX nOTOKaX npHCMemaHHOiiKOHBeKUUU.TaKoe yBeJTHYe- 

mie TeILIIOo6MeHa cornacyeTcn c yh4eHbmesiHeM TonmHHbt Tennoaoro norpaHwwor0 cnon npH sospac- 

Tatimi Re, ,Gr&u Pr. 


